CA659 Mathematical Models/Computational Science

In-Class Exercise 3

Exercises on Matrices

1. Find the determinants and eigenvalues of the following matrices:

(a) [2 5	$\binom{2}{-1}$	(c) $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$	2 3
(b) $\begin{bmatrix} 7\\3 \end{bmatrix}$	$\begin{bmatrix} 3 \\ -1 \end{bmatrix}$	(d) $\begin{bmatrix} 2\\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$

2. With the eigenvalues, we can find the eigenvectors of a matrix. An Eigenvector of a matrix A is any solution vector x for which: $Ax = \lambda x$.

Example: Find the eigenvalues and eigenvectors of the matrix $\begin{bmatrix} 1 & -2 \\ 1 & \lambda \end{bmatrix}$

(a) Firstly find the eigenvalues: Recall that the eigenvalues are calculated by solving $det(A - \lambda I) = 0$ (where *I* is the identity matrix). Thus

 $A - \lambda I = \begin{bmatrix} 1 - \lambda & -2 \\ 1 & 4 - \lambda \end{bmatrix}$ det $\begin{bmatrix} 1 - \lambda & -2 \\ 1 & 4 - \lambda \end{bmatrix} = 0$ gives the quadratic $(1 - \lambda)(4 - \lambda) + 2 = 0$ which simplifies to $\lambda^2 - 5\lambda + 6 = 0$ hence $\lambda = 2, 3$ are the eigenvalues.

(b) Now to find the eigenvectors: From above, these are the solution vectors to the system $Ax = \lambda x$ when we substitute the eigenvalues above. Hence for $\lambda = 2$, we get:

$$\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

So the first equation reads: $x_1 - 2x_2 = 2x_1$ giving $x_1 = -2x_2$ and thus the eigenvector x corresponding to the first eigenvalue λ is any multiple of $\begin{bmatrix} -2\\ 1 \end{bmatrix}$.

In a similar way, we can find the second eigenvector as any multiple of $\begin{bmatrix} -1\\ 1 \end{bmatrix}$. Find the eigenvectors of the above matrices in Q1 using the method outlined above.