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5. Statistical Inference 

5.1 Overview 
 

Statistical Inference is the process by which conclusions are drawn about some measure of 

the data e.g. the mean, variance (or Standard deviation) or proportion of the population 

…based upon analysis of the sample data. 

Taking a sample is a ‘real-world’ requirement because it is rare that one can ever work with 

the population as a whole; this is often too costly, time-consuming or difficult , e.g. if testing 

a component for faults means testing destructively, for example.  

 

Probabilistic Sampling involves selection and examination of a set of items from the 

population, which are representative of the population as a whole. 

 Simple Random Sampling  means ‘equal probability of selection’. This is not 

haphazard, but is based on systematic preparation of the sampling frame. 

            Note: Variants of SRS  - based on idea of known probabilities of selection 

 Objective: Sample characteristics  used to estimate population characteristics. 

      

 Accuracy depends on: 

             (i) Size of sample 

            (ii) How sample selected 

           (iii) Extent of variability in the population 

 

Sampling Types 

A probability sample may be drawn in a number of ways of which the simplest conceptually 

(and closest to true randomness) is a simple random sample. In 

 Simple Random Sampling, establishing the sampling frame is the hardest part as 

this must be comprehensive. Hence: 

Quasi-random Sampling is more usual. Again, there are a number of possibilities: e.g. 

 Systematic Sampling: – used in production, Quality control etc. In this case the 

selection starting point is randomly chosen, then every kth item from that point is 

selected( sampling interval can be varied, but care is needed to ensure that the interval 

chosen does not follow a pattern in the data, e.g. highs and lows) 



 

 Stratified Sampling : – here, a population has natural groups or strata, where 

members of a stratum are similar, but diversity exists between strata; random samples 

are taken within each stratum in the same proportions that apply in the population. 

 Multi-stage Sampling: this is similar to stratified sampling but groups and sub-

groups, sub-sub-groups etc. are selected e.g. on geographical /regional/ area/town/ 

street etc. basis, so strata have natural hierarchy – again similarity within strata, 

diversity between.  

 Cluster Sampling : is a cost-effective way of dealing with lack of a comprehensive 

sampling frame. The method uses selection of a few e.g. geographical areas at 

random and then drills down comprehensively (i.e. examines every single unit). 

 

Types of Inference 

1. Estimation: involves the use of a sample statistic to estimate a population parameter. The 

statistic can be a mean, variance, proportion, etc. The quality of the estimator is of obvious 

interest and a number of properties contribute to good estimators, i.e. 

Good estimators are   

- ‘unbiased’ : this implies that they are ‘on target’ : hence if the mean is of interest then 

the mean of all possible sample means (i.e. the expected value or on average value) is 

the population mean  

- ‘consistent’ : this means that the precision improves as the sample size increases 

- ‘efficient’    : this means that the variability improves with repeated sampling 

- ‘sufficient’  : this means that all information available in the sample is used in  

            estimating the population parameter, so e.g. the mean is a better estimator than the  

            median of the population ‘average’ because it uses all the numerical information, (i.e.  

            actual values, not just the rank order). 

Point and Interval estimate:  

A single calculation of a mean is a point estimate.  

In practice, if we know how the mean (or other sample statistic) is distributed, we can divide 

up its distribution in the usual way, such that 90% (or 95%) of the time, the mean should lie 

within an interval or range, based on the single sample value.  

This interval estimate is then considered established with 90% (95%) confidence 

 



 

2. Hypothesis Testing:     

In Hypothesis Testing, a statement is made about a population parameter, such as the 

population mean, variance, proportion.  

The statement validity is then tested, based on the sample data and a decision is made on the 

basis of the result obtained. 

If we can assume large samples drawn, then the Normal distribution can be used to test for 

means and proportions. 

If samples are not large, or we want to talk about variances, then other distributions will 

apply. 

(Collectively, the various distributions used in statistical inference are sometimes grouped 

under the heading of Sampling Distributions and include the Normal as the common basis). 

 

5.2 Additional distributions 

 
On the web page for course notes :  http://www.computing.dcu.ie/~hruskin/newteach.htm  

see CA200_Statisticaltables.pdf     and also 

CA200_Section_04_ExtraReStatsTablesEtc.pdf 

 
Students t-distribution 

 

• If population variance unknown, but population large, can still use the Normal. 

• For small samples, and  population variance  
2 

unknown  (i.e. must be estimated from 

the sample),
  
a slightly more conservative distribution than Normal applies = the 

Student’s T or just ‘t’-distribution. Introduces the degrees of freedom concept. 

• A random variable X is described as having a t-distribution with  degrees of freedom  

(d.o.f.) and denoted ( t

 ) . The degrees of freedom depend on sample size n and 

correspond to the degree of independence in the data. 

• The t-distribution is symmetric about the origin, just like the Normal and also has 

mean zero, i.e. E[X] = 0. However, spread and shape change, depending on d.o.f. 

For small values of , the t
 

 (or t
n
 ) distribution is very flat. As  is increased, the 

curve becomes bell- shaped.  

 

http://www.computing.dcu.ie/~hruskin/newteach.htm


 

For values of sample size n > 25, the t
 

 distribution is practically indistinguishable from the 

Standardised Normal distribution, so the latter can be used in the usual way.  

 

Generally, 

o If x
1
, x

2
, … , x

n
 is a random sample from a Normal distribution, with  mean m 

and variance s
2
 and sample size n large, can use the Normal for sampling 

distributions of means, with the  

     

                    standardised Normal  

 

o If x
1
, x

2
, … , x

n
 is a random sample from a Normal distribution, with                      

mean m and variance s
2
 and if we define  

       
                                                             i.e. Estimated Sample variance - see Statistical tables 

      

                   then                           has a t
n- 1

 distribution  

                                                     
                                                                          
                        where the denominator is the standard error and  

                      the d.o.f. for t n-1 come from                                                       Prob                                  

                      the estimated sample variance (i.e. n-1 )                                             

 

                          Note: Family of t-distributions,  

                           with members labelled by d.o.f.                           

                                                                                                                                                                    T 

                                                                       
 

Chi-Square  

 

A random variable X with a Chi-square distribution with  degrees of freedom  (  a positive 

integer, related to sample size n) [Expectation and variance in tables] has the following 

important features: 

 

 -  If X
1
, X

2
, … , X

n
 are Standardised Normal Random Variables,  
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-    So, if  x
1
, x

2
, … , x

n
 is a random sample of values for random variable X ~ N(µ ,s

2
), then 

        

     

  

 

 for  sample mean     , population mean µ ; sample variance  as before, population variance 
2 

 

and where the denominator for the U transform is again  the standard error (standard 

deviation of the distribution for the mean).                            Prob  

Note:      squared distribution, so all positive values. 

d.o.f. again depend on sample size as s
2
 (based on n-1) 

: usually have to estimate population variance by sample  

variance.                                                                                                                                X 

Again, family of 
2
  distributions, labelled by d.o.f.    

 

F-distribution 

 

A random variable V has an F distribution with m and n degrees of       Prob. 

       freedom if it has a distribution of form shown 

       [Expectation and variance – see  tables] 

        Illustrated is Fm,n    

                                                                                                                                               F                                                                                                                                                                                                              

For  X and Y independent random variables, s.t.  X ~ 
m

2

 and Y ~ 
n

2

  then F = ratio of chi-

squareds 

 

      

One consequence: if x
1
, x

2
, … , x

m
  ( m> 2) is a random sample from N(µ

1
, 

1

2

), and y
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, y
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, y
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), then 

 

 

 

 

in other words can compare two variances using the F-distribution. 

 

 

 

 

 

 

)1,0(~ NU

n

x








x

2

1

2 ~ ns 

nY

mX
F nm ,

1,1
2

2

~
)1()(

)1()(








nm

i

i

F
nyy

mxx



 

5.3 Sampling Theory 

 
Simple random sample assumes equal probability of item selection. If the same element can 

not be selected more than once, then say that the sample is drawn without replacement; 

otherwise, the sample is said to be drawn with replacement. 

 

The usual convention is to use lower case letters s, x, n are used for the sample characteristics 

with capital letters S, X, N  or greek letters for the parent population. Thus, if sample size is 

n, its elements are designated, x
1
, x

2
, …, x

n
, its mean is     and its variance is  

 
 
 
If repeatedly draw random samples, size n (with replacement) from a population distributed 

with mean µ and variance s
2
, then     ,       … is the set of sample means and 

 

 

 

is the sampling distribution of the means, i.e the standard Normal, with denominator equal to 

the standard error 

 

Note: This important theorem underpins Statistical Inference and the importance of the 

Normal distribution for inferences made. 

Central Limit Theorem. 

In the limit, as sample size n tends to infinity, the sampling distribution of means has a 

Standard Normal distribution.  

 
Attribute and Proportionate Sampling 

 

 If sample elements are measurements =  attribute sampling. If all sample elements 

are 1 or 0 (success/failure, agree/disagree) = proportionate sampling.  

 Sample average       and sample proportion p are handled in the same way, replacing 

the mean and its standard error in the U transform by the proportion and its standard 

error in the latter case. 
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Note 1: We can generalise the concept of the sampling distribution of means for the sampling 

distribution of any statistic, but may need to change distribution.  

 We say that the sample characteristic is an unbiased estimator of the parent population 

characteristic if the expectation (average) of the corresponding sampling distribution 

equals the parent characteristic, (see previously). 

So    

            E {   } = µ    ;  E [p] = P  ;   E{s
2
}   

2            
[

 
actually

   
=  (n-1)

2
] 

            where these refer to sample and population mean, sample and population proportion           

            and sample and population variance respectively. 

Note 2:  

Although the population may be very large, (effectively infinite), in which case, we can use 

the expressions as discussed, if it is small relative to sample size, we make a correction. 

Denoting size of finite population ‘N’ 

The quantity [( N - n) / ( N - 1)] is the finite population correction (fpc) 

  

• If sample size n large relative to population size, n> 0.05N, we should use fpc. 

            so e.g. E{s} =   fpc  for estimated sample S.D. (with fpc needed). 

• If sample size n small relative to population size N , i.e. n < 0.05N (or we have 

sampling with replacement ),  then effectively fpc = 1, i.e. no correction made. 

 

  

x



 

5.4 Estimation : Confidence Intervals 
 

From the statistical tables for a Standard Normal distribution, we note that                       95%     

 

 From U= To U =  

0.90 -1.64 +1.64 

0.95 -1.96 +1.96 

0.99 -2.58 +2.58 

                                                                                                -1.96                                   +1.96    

   From central limit theorem, if       and s
2
 are mean and variance of a random sample of size 

n, (n > 25), drawn from a large population, then use Normal distribution and the following 

statement applies w.r.t unknown population mean µ 

                                                                      

 

where U = term between inequalities 

and if population  unknown, can replace by s without needing another distribution, so, re-

arrange to get



 

So, the range                            is called a 90% confidence interval for population mean µ. 



Example 1: 

 

A random sample of size 25 weights of bales from a production process has mean      = 15 kg. 

and standard deviation (s) = 2 kg. Find a 95% confidence interval for the population mean 

weight µ of bales in the production process. 

 

Solution: 

Note: - Large sample – use Normal (i.e. can use s for  without needing to change                 

             distribution) 

           - Large parent population relative to sample – do not have to worry about fpc. 

 

Then a 95% confidence interval for the mean weight (µ) of bales in the production process 

as a whole, is                               i.e. 95% of Normal distribution falls between 

x
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-1.96 and +1.96, so substituting for sample mean and S.D. here gives 

 

  (i.e.)  95% confidence interval is  

                                                                           14.22 kg. to 15.78 kg. 

 

This can be interpreted as : ‘ 95% of the time the mean weight of bales in the production 

process will fall between 14.22 kg. and 15.78 kg.’ 

 

Example 2: 

An opinion poll is taken to determine the proportion of voters who are likely to vote for a 

given political party in a pending election. 

A random sample of size n = 1000 indicates that this proportion p = 0.40. 

Obtain (i) 90% and (ii) 95% confidence intervals of reliability of the poll. 

 

Solution: 

Note: - Proportion – dealt with in the same way as the mean.  

           - Large sample – use Normal (i.e. can use sample standard deviation for the    

              population standard deviation again) 

            - Large parent population – do not have to worry about fpc. 

            - Standard error of the mean has general form               as we have seen. 

              For a proportion, we also had S.E. of a proportion, (parallelling the case for a mean), 

              is the S.D. of the sampling distribution of  proportions           

              so just replace  ‘s’ by          , so S.E. (proportion) =            , where q = 1 – p as usual 

 

(i) So for 90% Confidence Interval    

                      Substitute sample values in  

             

             

            (ii)      For 95% Confidence Interval 

                      Substitute sample values in  
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 So, a 90% C.I. for population proportion, P is  0.40 ± 0.025 =  0.375 to  0.425 and a 95% 

confidence interval for P is 0.40 ± 0.030   = 0.37 to 0.43. 

 

 Note: for n = 1000, 1.96 [p (1 - p)] / n>> 0.03 for values of p between 0.3 and 0.7.  

This is the basis for statement that public opinion polls have an “inherent error of 3%”. 

This simplifies calculations in the case of e.g. opinion polls for large political parties 

 

Small Samples 

Summary 

For reference purposes, it is useful to regard the expression 

as the “default formula” for a confidence interval and modify it to suit circumstances. 

  If dealing with proportionate sampling, use the Normal: the sample proportion                    

                       is the sample ‘mean’                     and the standard error (s.e.) term  

                          

                       simplifies as: 

 

 Changing from 95% to 90% confidence interval  (say) in Normal swap 1.96 for 

1.64. 

 If n < 25, the Normal distribution is replaced by Student’s t 
n - 1

 distribution. 

 In sampling without replacement from a finite population,  (i.e. if sample size   

                       more than 5% of population size, then fpc term used). 

Note: width of the confidence interval increases with confidence level. 

  

Example 3.  

A random sample, size n = 10, drawn from a large parent population, has mean    = 12 , 

standard deviation, s = 2. Obtain 99% and 95% C.I. for population mean µ 

 

Solution: 

- Small sample – can  not use Normal (must use t distribution, with n-1 = 9 

d.o.f. here. Values between which 95% of population falls (see t-distribution 

tables) are   2.262.  

                    Values between which 99% of population falls = 3.25) 

- Large parent population – do not have to worry about fpc. 
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Then 99% C.I.  for parent population mean is  

 

                                  so  from  9.83    to    14.17 

 

and a 95% confidence interval for the parent mean is  

 

                                                    so from 10.492 to   13.508. 

 

Example 4. 

  

A department store chain has 10,000 credit card holders, who are billed monthly for 

purchases. The company want to take a sample of these credit card customers to determine 

average amount spent each month by all those holding credit cards.  A random sample of 25 

credit card holders was selected and the sample average was €75, with a sample standard 

deviation of €20. 

(i) Obtain a 95% Confidence interval using the Normal distribution. 

(ii) Obtain a 95% confidence interval using the t-distribution. 

 
Solution 

  

(i) Referring  to the distribution diagram at the top of this section (or to standard 

Normal distribution tables direcly), 95% of the distribution lies between ±1.96 of 

the mean  

The 95% confidence interval is given by 

 

 

                                                                      = 74.43 to 76.57 

 

The situation now is that we must use the t-distribution on n-1 d.o.f. (= 25-1 = 24). The 

picture is very similar  to (i) , but the distribution is a bit flatter and we must replace values of 

±1.96 (for the Normal) by those that apply for t24 .  95% of  the t24  distribution, (see tables), 

falls between ± 2.064. 

The 95% confidence interval now is:   

      

       

                                                                    =      73.35 to  76.65 

 
Note:   
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Since sample size (n) is 25, these are very close, as expected from the summary points 

previously. 

The t-interval remains slightly wider (i.e. slightly more conservative). 

 

Example 5 : on finite population correction, (fpc). 

 

For a product, package weight is to be checked as part of the quality control.  A sample of 80 

is drawn at random from a batch of 100. The sample mean was found to be 25g. and the 

standard deviation was found to be 6g.  

(i) What is the finite population correction factor here?  

(ii) What effect does it have on a 99% confidence interval for the mean? 

 

Solution  

Note:  Sample size (n) large relative to finite size of population, (N), i.e. sample size more 

than 5% of population size (n > 0.05N), so the fpc applies 

 

(i) The correction factor is  

 

(ii) 

     Usual Standard Error  is  

 

 

     S.E. with fpc applied is: 

 

 

 

99% Confidence Interval for usual standard error is then  

 

 

                                                                                                          i.e. = 23.27 to 26.73 

 

 

99% Confidence Interval for S.E, with fpc applied is 

 

 

                                                                                                           i.e. = 24.22 to 25.78 

                                                                                                           

 

Note: So, the precision of the sample estimate, measured by the standard error, is 

determined not only by the absolute size of the sample, but also to an extent by the proportion 

of the population sampled. 
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5.5 Hypothesis Testing Summarised (Complement to Confidence 

Intervals) 

 
Example 6. 
  
The average grade of all 19 year old students for a particular aptitude test is thought to be 

60%. A random sample of n= 49 students gives mean     = 55% with S.D.  s = 2%. Is the 

sample result consistent with the claim?  

 

Original claim is the null hypothesis (H
0
)   

  H
0
 : µ = 60.     Alternative then is H

1
 : µ  60.      

 

If true, test statistic                        follows the standard Normal as usual, (see distribution  

 

as before, (beginning previous section), or from Normal tables directly. Rejection regions for 

the null hypothesis are regions outside ±1.96, i.e. < -1.96 or > +1.96, (complementary to 

Confidence Intervals, which define the acceptance region for the null hypothesis). 

 

Substituting                    

 

This lies well outside the 95% confidence interval (i.e. falls in the rejection region), so either         

      (i)   The null hypothesis is incorrect 

or (ii)  An event with probability of at most 0.05 has occurred (size of rejection region) 

Hence, Reject H
0
, knowing probability of 0.05 exists that we are in error. Technically, we say 

we reject the null hypothesis at the 0.05 level of significance (). 

 

Note: The level of significance reflects the amount of risk that a decision-maker is willing to 

take of being wrong, i.e. of rejecting the null hypothesis (that things are working fine), in 

favour of an alternative – that they are not. Obviously, if the wrong decision is made, this has 

cost implications. 
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Steps in Hypothesis Testing 

 

1. State the null hypothesis, H0 (operation as usual) 

2. State the alternative hypothesis, H1 (operation not as usual) 

3. Specify the level of significance, , (i.e. risk prepared to take of being wrong in 

decision on accepting ) 

4. Note: the sample size n , what is known about sample and population, and what 

interested in measuring; hence decide on distribution, setting up the critical 

values that determine rejection and  acceptance regions, based on  chosen 

5. Determine the Test Transformation statistic (Test Statistic, i.e. U, T, 
2
,F) 

6. Compare value from sample calculation against critical values dividing 

acceptance/rejection regions. 

7. Decision Rule: If the value of the Test Statistic, based on sample data, falls into 

non-rejection region, we have no evidence against H
0
 , so Accept H

0
 

 If value of Test Statistic does fall into rejection region, the sample provides  

evidence  against H
0
 being true, so Reject H

0
 

8. Express result in terms of problem, giving the risk of getting decision on H
0
 

wrong, (i.e. the level of significance,  ).  

(e.g. if 95% confident, then 5% not confident, so level of significance   is 5% 

( has probability = 0.05). 

 

One –sided Tests: One and Two sample H.T. and further Examples_05B  


